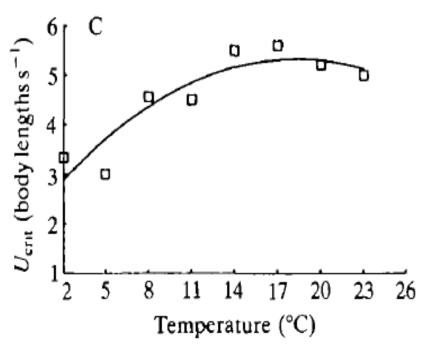
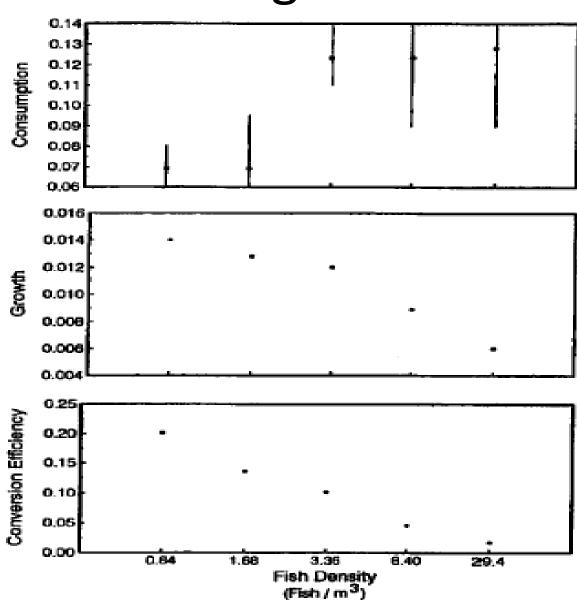

Bioenergetics


PhD. student Dr. A. Y. Al-Dubakel.

5- Bioenergetics models 1

What affects energetics?


- **Body size**
- **Activity levels**
- D.O., pH, or other stressors 4.
- Prey type and other exp. Set up.

What affects energetics?

5. Prey typeand other exp.Set up.

What affects energetics?

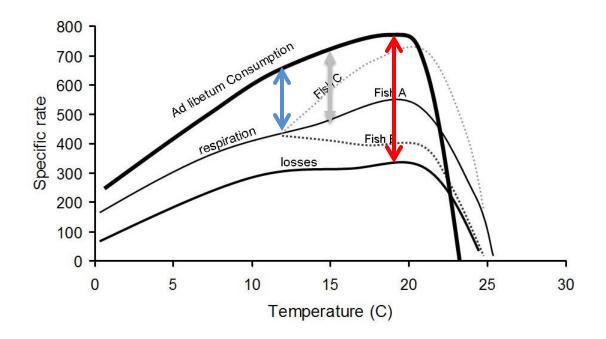
5. Prey type and other exp. Set up.

Young striped bass fed live age-0 spot, polychaetes, or chopped bay anchovy did not differ in maximum consumption rates (P > 0.05)

Cmax spot = 0.089 g/g/d

Cmax polych. = 0.080 g/g/d

Cmax anchovy = 0.071 g/g/d


Is individual variability important?

Scope for growth for a 3 hypothetical fish illustrating how changes in behavior (activity) can result in different growth potential and temperatures for optimum growth.

Fish A maintains constant activity levels with temperature and has an optimum temperature for growth (G-opt) of 14.5°C.

Fish B responds to increasing temperatures by decreasing activity resulting in a G-opt of 20°C.

Fish C increases activity with temperature resulting in a G-opt of 12°C.

- Metabolism = respiration + active metabolism+ SDA specific dynamic action
- Waste = egestion + excretion
- Growth = somatic growth + gonad production + repairs
- C = (R + A + S) + (F + U) + (B + G)

Consumption=Metabolism (Respiration) + Wastes (Excreted) + Growth (Production)

$$C = M + W + G$$

For Carnivores 100 = 44 + 27 + 29 For Herbivores 100 = 37 + 43 + 20

- What can we see?
 - 1) Herbivores have lower growth rates and higher waste-loss rates makes sense
 - 2) Both fishes have higher rates of growth efficiency than birds and mammals

Respiration = amount of energy used for routine metabolism; Dependent on fish size, water temperature and activity

Consumption = proportion of the maximum daily ration for a fish at a particular mass and temperature (g prey per g body mass per day)

* Allometric function of mass from ad libitum feeding experiments at optimum temperatures

Waste Losses (Egestion= fecal waste and Excretion=nitrogenous waste) = constant proportion of consumption or as functions dependent on water temperature and consumption

Types of Models in Fisheries

Organismal

-Behavior, physiology, genetics, pathology, etc.

Trophic Interactions

-Feeding, predation, competition, growth, nutrient recycling, growth, carrying capacity

Fish-Habitat Relations

-Predict fish presence, density or growth based on physical, chemical, biological factors

Population dynamics & assessment

-Predict abundance/biomass from growth, mortality, spawner-recruit, fishing, etc.

Fish are good subjects for bioenergetics models

*Cold-Blooded: Temperature affects metabolism and feeding rate directly *

Indeterminant growth —Large differences in sizeat-age for the same species across different populations. More food, better food, or favorable thermal conditions translate into better growth. *Growth provides an Integrative History of

environmental conditions & foraging success

Fish Bioenergetics Models are connected to other types of fish models

- Organismal Physiological rates for metabolism, consumption, growth, waste
- Trophic Interactions Feeding, predation, competition, growth, nutrient recycling, growth, carrying capacity, Ecosystem models
- Fish-Habitat Relations habitat quality from ambient environmental conditions, food availability & quality (growth potential)
- Population dynamics & assessment-Estimate population-level impacts by consumers on food resources (predation mortality, carrying capacity)

Bioenergetics Model: An Energy Balance Equation

- Consumption = Waste + Metabolism + Growth
- INPUT = OUTPUT
 - Consumption must balance costs plus Growth
- Most common application of the model is to Estimate the Consumption needed to satisfy observed Growth over a specified period
- MUCH easier to measure growth than consumption in field (Hatcheries are an exception)